Home
Class 11
MATHS
किसी त्रिभुज ABC के लिए , सिद्ध कीजिए...

किसी त्रिभुज ABC के लिए , सिद्ध कीजिए कि -
`(cosA)/(a)+(cosB)/(b)+(cos C)/(c)=(a^(2)+b^(2)+c^(2))/(2abc)`

Promotional Banner

Similar Questions

Explore conceptually related problems

(cos A)/(a)+(cos B)/(b)+(cos C)/(c)=(a^(2)+b^(2)+c^(2))/(2abc)

Show that (cosA)/(a)+(cosB)/(b)+(cosC)/(c)=(a^(2)+b^(2)+c^(2))/(2abc)

(cosA)/a+(cosB)/b+(cosC)/c=(a^(2)+b^(2)+c^(2))/(2abc)

(cosA)/a+(cosB)/b+(cosC)/c=(a^(2)+b^(2)+c^(2))/(2abc)

In any ABC, prove that: (cos A)/(a)+(cos B)/(b)+(cos C)/(c)=(a^(2)+b^(2)+c^(2))/(2abc)

For DeltaABC , prove that, (cosA)/(a)+(cosB)/(b)+(cosC)/(c)=(a^(2)+b^(2)+c^(2))/(2abc) .

For any triangle ABC, prove that : (cosA)/(a)+(cosB)/(b)+(cosC)/(c)=(a^(2)+b^(2)+c^(2))/(2abc)

For any triangle ABC, prove that (cos A)/(a)+(cos B)/(b)+(cos C)/(c)=(a^(2)+b^(2)+c^(2))/(2abc)

Show that cosA/a +cosB/b +cosC/c =(a^2 +b^2 +c^2 )/2abc