Home
Class 11
MATHS
" If "A=[[1,-2,1],[0,1,-1],[3,-1,1]]" th...

" If "A=[[1,-2,1],[0,1,-1],[3,-1,1]]" then find "A^(3)-3A^(2)-A-3I," where "I" is unit matrix of order "3

Promotional Banner

Similar Questions

Explore conceptually related problems

If A=[{:(1,-2,1),(0,1,-1),(3,-1,1):}] then show that A^3-3A^2-A-3I=O , where I is unit matrix of order 3

If A = [[2,0,1],[2,-1,3],[1,1,0]] then find A^2-3A+2I .

If A=[[1,-2],[5,3]],B=[[1,-3],[4,-7]] ,then find the matrix A-2B+6I , where I is the unit matrix of order 2.

If A= '[[1,2,3],[3,-2,1], [4, 2, 1]] , then find A^2-23A-40 I where I is Identify Matrix.

If A=[{:(,2,-1),(,-1, 3):}]" evaluate "A^2-3A+3I , where I is a unit matrix of order 2.

If A=[[1,-2],[5,6]],B=[[3,-1],[3,7]] ,Find AB-2I ,where I is unit martrix of order 2.

if A[{:(1,3,2),(2,0,3),(1,-1,1):}], then find A^(3)-2A^(2)+A-I_(3).

if A[{:(1,3,2),(2,0,3),(1,-1,1):}], then find A^(3)-2A^(2)+A-I_(3).

If A=[[3,1],[-1,2]] prove that A^2-5A+7I=O ,where I is unit matrix of order 2.

If A = [[1,x,-2],[2,2,4],[0,0,2]] and A^2+2I_3=3A Find x, here I_3 is the unit matrix of order 3.