Home
Class 11
MATHS
lim(theta->0) (1-costheta)/(sin^2 2theta...

`lim_(theta->0) (1-costheta)/(sin^2 2theta)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate the following : lim_(theta to 0)(1-costheta)/(2theta^(2))

If lim_(theta->0)((a(1-costheta))/(theta^2)-(bsintheta)/(theta))=1 then the value of 2b-a is -lambda , then the value of lambda is (1) 2 (2) 4 (3) 6 (4) 8

Evaluate : lim_(thetararr0)[(1-costheta)/(theta^2)] .

lim_(theta rarr 0) (1-cos theta)/(theta. costheta)=

lim_(theta rarr0)((sin theta)/(sin((theta)/(2))))=2

(i) ("sin"theta "tan"theta)/(1-costheta)=1sectheta (1+costheta)/(1-costheta)=("tan"^2theta)/((sectheta-1))^2

Prove: (tantheta+1/(costheta))^2+(tantheta-1/(costheta))^2=2((1+sin^2theta)/(1-sin^2theta))

If (cos theta)/(1-sin theta)-(costheta)/(1+sin theta)=2 , then find the value of theta .

If 0^(@)lethetale90^(@) , then solve the following equations : (i) (costheta)/(1-sintheta)+(costheta)/(1+sintheta)=4 (ii) (cos^(2)theta-3costheta+2)/(sin^(2)theta)=1 (iii) (costheta)/("cosec"theta+1)+(costheta)/("cosec"theta-1)=2