Home
Class 11
MATHS
" in' "(2+omega+omega^(2))^(3)+(1+omega-...

" in' "(2+omega+omega^(2))^(3)+(1+omega-omega^(2))^(8)-(1-3(u-omega)^(2))^(4)=

Promotional Banner

Similar Questions

Explore conceptually related problems

(2+omega+omega^2)^3+(1+omega-omega^2)^8-(1-3omega+omega^2)^4=1

Prove the following (1- omega + omega^(2)) (1 + omega- omega^(2)) (1 - omega- omega^(2))= 8

If omega be a complex cube root of unity,then the number (1-omega-omega^(2))^(3)+(omega-1-omega^(2))^(3)+(omega^(2)-omega-1)^(3) is: a.Divisible by 3 but not by 8 b.Divisible by 8 but not by 3 c.Divisible by both 3 & 8 d.none of these

(2 + omega + omega ^ (2)) ^ (3) + (1 + omega-omega ^ (2)) ^ (3) = (1-3 omega + omega ^ (2)) ^ (4) = 1

Prove that (1-omega-omega^(2))(1-omega+omega^(2))(1+omega-omega^(2))=8

Prove the following (1- omega + omega^(2)) (1- omega^(2) + omega^(4)) (1- omega^(4) + omega^(8)) …. to 2n factors = 2^(2n) where , ω is the cube root of unity.

If omega be an imaginary cube root or unity, prove that (1- omega+ omega^(2)) (1-omega^(2)+ omega^(4)) (1- omega^(4)+ omega ^(8))..."to" 2 n th factor =2^(2n)

(1 - omega + omega^(2)) ( 1 - omega^(2) + omega^(4)) ( 1- omega^(4) + omega^(8)) to 2n factors =

If omega is a complex cube root of unity then (1-omega+omega^(2))(1-omega^(2)+omega^(4))(1-omega^(4)+omega^(8))(1-omega^(8)+omega^(16))

Arrange the following values in descending order A)(1+omega)(1+omega^2)(1+omega^4)(1+omega^8) B) (1-omega+omega^2)^7+(1+omega-omega^2)^7 C)(1-omega)(1-omega^2)(1-omega^4)(1-omega^8) D) (1-omega+omega^2)(1-omega^2+omega^4)