Home
Class 12
MATHS
" If "int[2^(x)/((1-4x)^(1/2))]dx=k sin^...

" If "int[2^(x)/((1-4x)^(1/2))]dx=k sin^(-1)(2^(x))+C(C" is an arbitrant ")," then "k=

Promotional Banner

Similar Questions

Explore conceptually related problems

If int(2^(x))/(sqrt(1-4^(x)))dx=k.sin^(-1)(2^(x))+c , then : k=

If int(2^(x))/(sqrt(1-4^(x)))dx=K Sin^(-1)(2^(x))+c , then K=

If int(2^(x))/(sqrt(1-4^(x)))dx=k.sin^(-1)(2^(x))+c , then : k=

int(2^(x))/(sqrt(1-4^(x)))dx=k sin^(-1)2^(x)+c, then k=

If int (2^(x))/(sqrt(1-4^(x))) dx = k sin ^(-1) (f(x)) + C then :

If int (2^(x))/(sqrt(1-4^(x))) dx = k sin ^(-1) (f(x)) + C then :

If int(2^(x))/(sqrt(1-4^(x)))dx=Ksin^(-1)(2^(x))+C , then K is equal to

int(2^x)/(sqrt(1-4^x))dx=ksin^(- 1)2^x+c , then k =

If int (2^x)/(sqrt(1-4^(x)))dx = k sin^(-1) (2^(x))+C , then k is equal to :