Home
Class 12
MATHS
" 15.Prove that "tan^(-1)((cos x)/(1-sin...

" 15.Prove that "tan^(-1)((cos x)/(1-sin x))-cot^(-1)(sqrt((1+cos x)/(1-cos x)))=(pi)/(4)AA x in]0,(pi)/(2)[

Promotional Banner

Similar Questions

Explore conceptually related problems

arctan^(-1)((cos x)/(1-sin x))-cos^(-1)(sqrt((1+cos x)/(1-cos x)))=(pi)/(4),x in(0,(pi)/(2))

prove that tan^(-1)((cos x)/(1-sin x))-cot^(-1)((sqrt(1+cos x))/(sqrt(1-cos x)))=(pi)/(4),x varepsilon(0,(pi)/(2))

Prove that: (i)tan^(-1){(sqrt(1+cos x)+sqrt(1-cos x))/(sqrt(1+cos x)-sqrt(1-cos x))}=(pi)/(4)+(x)/(2)

Prove that: tan^(^^)(-1){(sqrt(1+cos x)+sqrt(1-cos x))/(sqrt(1+cos x)-sqrt(1-cos x))}=pi/4-x/2, if pi

Prove that cos tan^(-1)sin cot^(-1)x=sqrt((1+x^2)/(2+x^2) .

Prove that tan^(-1)((cos x)/(1+sin x))=(pi)/(4)-(x)/(2),|x in(-(pi)/(2),(pi)/(2))

Prove that cos (tan^(-1) (sin (cot^(-1) x))) = sqrt((x^(2) + 1)/(x^(2) + 2))

Prove that cos (tan^(-1) (sin (cot^(-1) x))) = sqrt((x^(2) + 1)/(x^(2) + 2))

Prove that cos tan^(-1)sin cot^(-1)x=sqrt((x^(2)+1)/(x^(2)+2))

Prove that tan^(-1)((sqrt(1+x)-sqrt(1-sin x))/(sqrt(1+x)-sqrt(1-sin x)))=(pi)/(4)-(1)/(2)cos^(-1),-(1)/(sqrt(2))<=x<=1