Home
Class 12
MATHS
int(1)/(x^(2)+a^(2))*dx=(1)/(a)tan^(-1)(...

int(1)/(x^(2)+a^(2))*dx=(1)/(a)tan^(-1)((x)/(a))+c

Promotional Banner

Similar Questions

Explore conceptually related problems

int(1)/(x^(2))tan^(2)((1)/(x))dx

int(1)/(1+3cos^(2)x)dx=(1)/(2)tan^(-1)((tan x)/(2))+c

(i) int(dx)/(sqrt(a^(2)-x^(2)))=(1)/(a)sin^(-1)((x)/(a))+c (ii) int(dx)/(a^(2)+x^(2))=tan^(-1)((x)/(a))+c (iii) int(x+1)/(x^(2)+2x+1)dx=(1)/(2)log|(x^(2)+2x+1)| (iv) int(dx)/(x(x-1))dx=log|(x-1)/(x)|+c State which pair of the statement given above is true.

If int(dx)/((x^(2)+1)^(2))=(A)/(148)tan^(-1)x+(1)/(2)(x)/(x^(2)+1)+C then A equals.......

If int(dx)/((x^(2)+1)^(2))=(A)/(148)tan^(-1)x+(1)/(2)(x)/(x^(2)+1)+C then A equals.......

" If "int(1)/(x^(4)+1)dx=(1)/(2sqrt(2))tan^(-1)((x^(2)-1)/(sqrt(2)x))+A+c" .Then "A" is equal to "

" If "int(1)/(x^(4)+1)dx=(1)/(2sqrt(2))tan^(-1)((x^(2)-1)/(sqrt(2)x))+A+c" .Then "A" is equal to "

int(1)/((1+x^(2))tan^(-1)x)dx

int (1)/((1+x^(2)) Tan^(-1)x)dx=

int(1)/(1+tan ^(2)x)dx