Home
Class 11
MATHS
सिद्ध कीजिए: i^(n)+i^(n+1)+i^(n+2)+i^(...

सिद्ध कीजिए:
`i^(n)+i^(n+1)+i^(n+2)+i^(n+3)=0`, सभी `n in N` के लिए

Promotional Banner

Similar Questions

Explore conceptually related problems

1 + i^(2n) + i^(4n) + i^(6n)

Prove that i^(n)+i^(n+1)+i^(n+2)+i^(n+3)=0 , for all n in N .

Prove that i^(n)+i^(n+1)+i^(n+2)+i^(n+3)=0 for all n inN

For an positive integer n, prove that : i^(n) + i^(n+1) + i^(n+2) + i^(n+3) + i^(n+4) + i^(n + 5) + i^(n+6) + i^(n+7) = 0 .

Q.sum_(n=1)^(13)(i^(n)+i^(n+1))=(-1+i),n in N

i ^n+i ^(n+1)+i ^(n+2)+i ^(n+3) (n∈N) is equal to

Find the value of i^(n)+i^(n+1)+i^(n+2)+i^(n+3) for all n in N.

Sum of four consecutive powers of i(iota) is zero. i.e., i^(n)+i^(n+1)+i^(n+2)+i^(n+3)=0,forall n in I. If sum_(n=1)^(25)i^(n!)=a+ib, " where " i=sqrt(-1) , then a-b, is

Sum of four consecutive powers of i(iota) is zero. i.e., i^(n)+i^(n+1)+i^(n+2)+i^(n+3)=0,forall n in I. If sum_(n=1)^(25)i^(n!)=a+ib, " where " i=sqrt(-1) , then a-b, is