Home
Class 12
MATHS
[y=(x+sqrt(x^(2)+1))^(P)],[" To "P(x^(2)...

[y=(x+sqrt(x^(2)+1))^(P)],[" To "P(x^(2)+1)y_(2)+xy_(1)-p^(2)y=0]

Promotional Banner

Similar Questions

Explore conceptually related problems

If y={x+sqrt(x^(2)+1)}^(m), show that (x^(2)+1)y_(2)+xy_(1)-m^(2)y=0

If y=x+sqrt(x^(2)-1)," then "(x^(2)-1)y_(2)+xy_(1)=

y = [x + sqrt(x^2 + 1)]^p , prove that (x^2 + 1)y_2 + xy_1 - p^2y = 0

If y=sin^(-1)x/sqrt(1-x^(2)) show that (1-x^(2))y_(2)-3xy_(1)-y=0 .

y = sqrt(1 + x^(2)) : y' = (xy)/(1 + x^(2))

y = sqrt(1 + x^(2)) : y' = (xy)/(1 + x^(2))

y = sqrt(1 + x^(2)) : y' = (xy)/(1 + x^(2))