Home
Class 6
MATHS
-6.xy-[yz-zx-{yx-(3y-xz)-(xy-zy)]]...

-6.xy-[yz-zx-{yx-(3y-xz)-(xy-zy)]]

Promotional Banner

Similar Questions

Explore conceptually related problems

Add: 7xy+5yz-3zx,4yz+9zx-4y,-3xz+5x-2xy

Using the properties of determinants, show that: [[x, x^2, yz],[y, y^2, zx],[z, z^2, xy]]=(x-y)(y-z)(z-x)(xy+yz+zx)

By using properties of determinants, prove that |[x,x^2,yz],[y,y^2,zx],[z,z^2,xy]|=(x-y)(y-z)(z-x)(xy+yz+zx)

Prove that: |[x,x^2,yz],[y,y^2,zx],[z,z^2,xy]|=(x-y)(y-z)(z-x)(xy+yz+zx)

Using the properties of determinants, show that : |[[x^2, y^2, z^2],[yz, zx, xy],[x,y,z]]|= (x-y)(y-z)(z-x)(xy+yz+zx) .

Prove that quad det ([yx-x^(2),zx-y^(2),xy-z^(2)zx-y^(2),xy-z^(2),yz-x^(2)xy-z^(2),yz-x^(2),zx-y^(2)]) is divisible by (x+y+z) and hence find the quotient.

det[[2x,xy-xz,y2x+z+1,xy-xz+yz-z^(2),1+y3x+1,2xy-2xz,1+y]]

Simplify- (x-y)/(xy)+(y-z)/(yz)+(z-x)/(zx)

Show that: |[x, y ,z],[x^2, y^2, z^2], [yz, zx, xy ]|=(x-y)(y-z)(z-x).(xy+yz+zx)