Home
Class 11
MATHS
" 17.If "y=sin^(-1)x," prove that "(dy)/...

" 17.If "y=sin^(-1)x," prove that "(dy)/(dx)=(1)/(sqrt(1-x^(2)))

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=e^(a sin^(-1)x) then prove that dy/dx=(ay)/(sqrt(1-x^(2)) .

If y = sin(log_(e) x) prove that (dy)/(dx) = sqrt(1-y^2)/x

Find the (dy)/(dx) of y=sin^(-1)sqrt(1-x^2)

If y=x\ sin^(-1)x+sqrt(1-x^2) , prove that (dy)/(dx)=sin^(-1)x

If y=x sin^(-1)x+sqrt(1-x^(2)), prove that (dy)/(dx)=sin^(-1)x

If y=x sin^(-1)x+sqrt(1-x^(2)), prove that (dy)/(dx)=sin^(-1)x

If x=sqrt(a^(sin^(-1)t)) then prove that (dy)/(dx)=(-y)/(x)

If sqrt(1-x^(2))+sqrt(1-y^(2))=a(x-y), prove that (dy)/(dx)=sqrt((1-y^(2))/(1-x^(2)))

If sqrt(1-x^(2))+sqrt(1-y^(2))=a(x-y), prove that (dy)/(dx)=sqrt((1-y^(2))/(1-x^(2)))

If x sqrt(1+y)+y sqrt(1+x)=0, prove that (dy)/(dx)=-(1)/((x+1)^(2))