Home
Class 12
MATHS
[" 1f "x^(p)*y^(q)=(x+y)^(p+q)," show th...

[" 1f "x^(p)*y^(q)=(x+y)^(p+q)," show that "(dy)/(dx)=(y)/(x)],[" (C.B.S."]

Promotional Banner

Similar Questions

Explore conceptually related problems

If x^(p)y^(q)=(x+y)^(p+q) , prove that (dy)/(dx)=(y)/(x)

If x^(p)y^(q)=(x+y)^(p+q) , show that dy/dx=y/x .

If x^(p)y^(q)=(x+y)^(p+q) , then prove that (dy)/(dx)=(y)/(x) .

If x^p . y^q = (x + y)^(p + q) , show that (dy)/(dx) = y/x

x^(p)*y^(q) = (x+y)^(p+q) prove that dy/dx= y/x

If x^p.y^q=(x+y)^(p+q) , show that dy/dx=y/x ;

If x^(p) y^(q) = (x + y)^((p + q)) " then " (dy)/(dx)= ?

If x^(p) y^(q) = (x + y)^((p + q)) " then " (dy)/(dx)= ?

If x^(p) y^(q) = (x + y)^((p + q)) " then " (dy)/(dx)= ?

If x^(p) + y^(q) = (x + y)^(p+q) , " then" (dy)/(dx) is