Home
Class 12
MATHS
" If "int(x^(2)-x+1)/(x^(2)+1)e^(cot^(-1...

" If "int(x^(2)-x+1)/(x^(2)+1)e^(cot^(-1)x),dx=A(x)e^(cot^(-1)x)+C," then "A(x)" is equal to : "

Promotional Banner

Similar Questions

Explore conceptually related problems

int((x^(2)-x+1)/(x^(2)+1))e^(cot-1)xdx=A(x)e^(cot-1)x+c,A=

int ((x ^(2) -x+1)/(x ^(2) +1)) e ^(cot^(-1) (x))dx =f (x) .e ^(cot ^(-1)(x)) +C where C is constant of integration. Then f (x) is equal to:

int ((x ^(2) -x+1)/(x ^(2) +1)) e ^(cot^(-1) (x))dx =f (x) .e ^(cot ^(-1)(x)) +C where C is constant of integration. Then f (x) is equal to:

int(cot^(-1)(e^(x)))/(e^(x))dx is equal to

" 1) "int(cot^(-1)x)/(1+x^(2))dx=

int e^x (cot x + log sin x)dx is equal to :

int((1+x)e^(x))/("cot" (xe^(x)))dx is equal to

int_(-1)^(3)[tan^(-1).(x)/(x^(2)+1)+cot^(-1).(x)/(x^(2)+1)]dx

int_(0)^(1)(cot^(-1)x)/(1+x^(2))dx