Home
Class 12
MATHS
Using properties of determinant prove th...

Using properties of determinant prove that: |[1,x+y, x^2+y^2],[1, y+z, y^2+z^2],[1, z+x, z^2+x^2]|= (x-y)(y-z)(z-x) `

Promotional Banner

Similar Questions

Explore conceptually related problems

Using the properties of determinant, show that : |[1,x+y,x^2+y^2],[1,y+z,y^2+z^2],[1,z+x,z^2+x^2]| = (x-y)(y-z)(z-x)

using the properties of determinants prove that |{:(1,x+y,x^2+y^2),(1,y+z,y^2+z^2),(1,z+x,z^2+x^2):}|=(x-y)(y-z)(z-x)

By using properties of determinants. Show that: |[x,x^2,y z],[ y, y^2,z x],[ z, z^2,x y]|=(x-y)(y-z)(z-x)(x y+y z+z x)

By using properties of determinants, prove that |[x,x^2,yz],[y,y^2,zx],[z,z^2,xy]|=(x-y)(y-z)(z-x)(xy+yz+zx)

Using properties of the determinants, prove that: |[2y, y-z-x, 2y],[2z, 2z, z-x-y], [x-y-z, 2x, 2x]| = (x+y+z)^3

Using the properties of determinants, show that : |[[x, y, z],[x^2, y^2, z^2],[x,y,z]]|= 0 .

Using properties of determinants, prove that |[2y,y-z-x,2y],[2z,2z, z-x-y],[ x-y-z, 2x,2x]|=(x+y+z)^3

Using properties of determinants, prove that |{:(x,y,z),(x^(2),y^(2),z^(2)),(y+z,z+x,x+y):}|=(x-y)(y-z)(z-x)(x+y+z)

By using properties of determinants, prove that |[x+y+2z,x,y],[z,y+z+2x,y],[z,x,z+x+2y]|=2(x+y+z)^3

Using properties of determinants, prove that |[a+x,y,z],[x,a+y,z],[x,y,a+z]|=a^2(a+x+y+z)