Home
Class 11
MATHS
" 60.If "A=[[2,2,1],[1,3,1],[1,2,2]]" th...

" 60.If "A=[[2,2,1],[1,3,1],[1,2,2]]" then "A^(-1)+(A-5I)(A-I)^(2)=

Promotional Banner

Similar Questions

Explore conceptually related problems

If A=[[2, 2, 1], [1, 3, 1], [1, 2, 2]], and A^(-1)+(A-5I)(A-I)^(2)=

If A=[[1,2,2], [2,1,2],[2,2,1]] then A^(2)-5I=

If A = [(2,2,1), (1,3,1), (1,2,2)] then A^-1+(A-5I) (AI)^2 = (i) 1/ 5 [[4,2, -1], [-1,3,1], [-1,2,4]] (ii) 1/5 [[4, -2, -1], [-1, 3, -1], [-1, -2,4]] (iii) 1/3 [[4,2, -1], [-1,3,1], [-1,2,4]] (iv) 1/3 [[4, -2, -1], [-1,3, -1], [-1, -2,4]]

If A = [[2,0,1],[2,1,3],[1,1,0]] then find A^2-2A+5I .

" 2.Let "A=[[1,0,2],[2,0,1],[1,1,2]]," then "(det((A-I)^(3)-4A))/(5)" is "

If A= [[1,2,2],[2,1,2],[2,2,1]] , find A^2-4A-5I=O

If A=[[1,2,2],[2,1,2],[2,2,1]] , verify that : A^2-4A-5I=O

If A =[[1,2,2],[2,1,2],[2,2,1]] then prove that A^2-4A-5I=0 .

If A=[{:(,1,1,2),(,0,2,1),(,1,0,2):}] show that A^(3)=(5A-I)(A-I)