Home
Class 12
MATHS
" (xiii) "tan^(2)A-tan^(2)B=(cos^(2)B-co...

" (xiii) "tan^(2)A-tan^(2)B=(cos^(2)B-cos^(2)A)/(cos^(2)B*cos^(2)A)=(sin^(2)A-sin^(2)B)/(cos^(2)A cos^(2)B)

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove the following identities: tan^(2)A-tan^(2)B=(cos^(2)B-cos^(2)A)/(cos^(2)B cos^(2)A)=(sin^(2)A-sin^(2)B)/(cos^(2)A cos^(2)B)(sin A-sin B)/(cos A+cos B)+(cos A-cos B)/(sin A+sin B)=0

sin^(2)A cos^(2)B-cos^(2)A sin^(2)B=sin^(2)A-sin^(2)B

Prove the following identities: tan^2A-tan^2B=(cos^2B-cos^2A)/(cos^2Bcos^2A)=(sin^2A-sin^2B)/(cos^2Acos^2B) (sinA-sinB)/(cosA+cosB)+(cosA-cosB)/(sinA+sinB)=0

cos (A+B).cos(A-B)=cos^(2)A-sin^(2)B

cos (A+B).cos(A-B)=cos^(2)A-sin^(2)B

sin^(2) A cos^(2)B + cos ^(2) A sin^(2) B + sin^(2) A sin^(2) B+ cos^(2) A cos^(2) B=

Prove that :(tan(A+B))/(cot(A-B))=(sin^(2)A-sin^(2)B)/(cos^(2)A-sin^(2)B)

Show that tan^2A-tan^2B=(sin^2A-sin^2B)/(cos^2Acos^2B)

Show that: tan(A+B).tan(A-B)=(sin^(2)A-sin^(2)B)/(cos^(2)A-sin^(2)B).

Prove that (i) (sin^(2)A cos^(2)B - cos^(2)A sin^(2) B )=(sin^(2)A- sin^(2)B) (ii) (tan^(2)A sec^(2)B - sec^(2)A tan^(2)B)=(tan^(2)A- tan^(2)B)