Home
Class 12
MATHS
sin^(-1)((1)/(sqrt(x+1)))...

sin^(-1)((1)/(sqrt(x+1)))

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the solution of sin^(-1)(x/(1+x))-"sin"^(-1)(x-1)/(x+1)="sin"^(-1)1/(sqrt(1+x))

If y = sec^(-1) (sqrt(x+1)/(sqrt(x-1)))+ sin^(-1)(sqrt(x-1)/(sqrt(x+1))) then (dy)/(dx) =

int_(-1)^(1)(sin^(-1)""(x)/(sqrt(1-x^(2)))+Cos^(-1)(x)/(sqrt(1-x^(2))))dx=

sin^(-1){(1)/(sqrt(1+x^(2)))}

solve : sin ^(-1) ""((x)/(sqrt(1+x^(2))))-sin ^(-1)((1)/(sqrt(1+x^(2))))= sin ^(-1) ((1+x)/(1+x^(2)))

Evaluate: inte^xdot(sqrt(1-x^2)sin^(-1)x+1)/(sqrt(1-x^2))\ dx

If y= sin ^(-1) ((x)/(1+ sqrt(1- x ^(2)))), |x|le 1, then (dy)/(dx) at ((1)/(2)) is:

Prove that (d)/(dx)(sin^(-1)x)=(1)/(sqrt(1-x^(2)) , where x in [-1,1].

Evaluate inte^x(sin^-1x+(1)/(sqrt(1-x^2))) dx .