Home
Class 12
MATHS
किसी त्रिभुज ABC में यदि A = tan^(-1)2 त...

किसी त्रिभुज ABC में यदि `A = tan^(-1)2` तथा `B = tan^(-1)3` सिद्ध करे कि `C = (pi)/(4)`.

Promotional Banner

Similar Questions

Explore conceptually related problems

In any triangle ABC, if A=tan^(-1) 2 and B = tan^(-1) 3 . Prove that C= pi/4 .

In any triangle ABC, if A=tan^(-1) 2 and B = tan^(-1) 3 . Prove that C= pi/4 .

tan^(-1)((1)/(2))+tan^(-1)((1)/(3))=(pi)/(4)|0tan(1)+tan(1)

Let theta = tan^(-1) ( tan . (5pi)/4) " and " phi = tan^(-1) ( - tan . (2pi)/3) then

Let theta = tan^(-1) ( tan . (5pi)/4) " and " phi = tan^(-1) ( - tan . (2pi)/3) then

Let theta = tan^(-1) ( tan . (5pi)/4) " and " phi = tan^(-1) ( - tan . (2pi)/3) then

The vaue of tan^-1 1+tan^-1 2+tan^-1 3 is (A) 0 (B) 1 (C) pi (D) -pi

If in triangle ABC, C = 90^circ then prove that tan^(-1) (a/(c+b)) + tan^(-1) (b/(a+c)) = pi/4 .

If tan^(-1) a+tan^(-1) b +tan^(-1)c=pi , prove that a+b+c=abc.

The value of tan^(-1) (2) + tan^(-1) (3) is equal to a) (3pi)/(4) b) (pi)/(4) c) (pi)/(3) d) tan^(-1) (6)