Home
Class 14
MATHS
503xx201 = ?...

`503xx201 `= ?

A

101103

B

1000000

C

110000

D

100003

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( 503 \times 201 \), we can use the distributive property to simplify our calculations. Here’s a step-by-step breakdown of the solution: ### Step 1: Break down the multiplication We can express \( 201 \) as \( 200 + 1 \). Therefore, we can rewrite the multiplication as: \[ 503 \times 201 = 503 \times (200 + 1) \] ### Step 2: Apply the distributive property Using the distributive property, we can distribute \( 503 \) to both terms inside the parentheses: \[ 503 \times (200 + 1) = 503 \times 200 + 503 \times 1 \] ### Step 3: Calculate each term Now, we will calculate each term separately: 1. **Calculate \( 503 \times 200 \)**: - We can break down \( 503 \) as \( 500 + 3 \): \[ 503 \times 200 = (500 + 3) \times 200 = 500 \times 200 + 3 \times 200 \] - Now calculate: \[ 500 \times 200 = 100000 \quad \text{(since } 5 \times 2 = 10 \text{ and add 4 zeros)} \] \[ 3 \times 200 = 600 \] - Therefore: \[ 503 \times 200 = 100000 + 600 = 100600 \] 2. **Calculate \( 503 \times 1 \)**: \[ 503 \times 1 = 503 \] ### Step 4: Add the results Now, we add the results from the two calculations: \[ 503 \times 201 = 100600 + 503 = 101103 \] ### Final Answer Thus, the final result of \( 503 \times 201 \) is: \[ \boxed{101103} \]
Promotional Banner

Topper's Solved these Questions

  • APPROXIMATION

    ARIHANT SSC|Exercise Fast Track Practice|74 Videos
  • ALLIGATIONS

    ARIHANT SSC|Exercise EXERCISE|29 Videos
  • AREA AND PERIMETER

    ARIHANT SSC|Exercise FAST TRACK TECHENIQUES|133 Videos

Similar Questions

Explore conceptually related problems

If 503xx217=109151 , then 5.03xx2.17= ?

What will come in place of question mark (?) . 303xx125-25xx201 =?

What should be subtracted from the product 102 xx 201 to get 19999 ?

What value will come in place of question mark (?) in the questions given below? 4343 / 202 +201 = ?

(9.05)^2 xx (2.01)^3 = 2xx(?)^2

371 503 - 281 498 =

371 503 - 281 498 =

If sum_(r=1)^(n)(r^(2)+1)r!=200xx201!, then n=

Consider any set of 201 observations x_(1),x_(2), …, x_(200),x_(201) . It is given that x_(1) lt x_(2) lt … lt x_(200) lt x_(201). Then, the mean deviation of this set of observations about a point k is minimum, when k equals