Home
Class 14
MATHS
(137 + 17xx3.99)/(4.02xx3.98)= ?...

`(137 + 17xx3.99)/(4.02xx3.98)`= ?

A

a. 13.2

B

b. 12.5

C

c. 2.5

D

d. 2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \((137 + 17 \times 3.99)/(4.02 \times 3.98)\), we can use approximation for easier calculation. Here’s the step-by-step solution: ### Step 1: Approximate the values - Approximate \(3.99\) to \(4\) - Approximate \(4.02\) to \(4\) - Approximate \(3.98\) to \(4\) ### Step 2: Rewrite the expression with approximations Now we can rewrite the expression using these approximations: \[ (137 + 17 \times 4)/(4 \times 4) \] ### Step 3: Calculate \(17 \times 4\) Next, calculate \(17 \times 4\): \[ 17 \times 4 = 68 \] ### Step 4: Substitute back into the expression Now substitute this back into the expression: \[ (137 + 68)/(4 \times 4) \] ### Step 5: Calculate \(4 \times 4\) Calculate \(4 \times 4\): \[ 4 \times 4 = 16 \] ### Step 6: Substitute and simplify the numerator Now substitute this back into the expression: \[ (137 + 68)/16 \] ### Step 7: Calculate \(137 + 68\) Now calculate \(137 + 68\): \[ 137 + 68 = 205 \] ### Step 8: Final calculation Now we can perform the final division: \[ 205/16 \] ### Step 9: Calculate \(205/16\) Now divide \(205\) by \(16\): \[ 205 \div 16 = 12.8125 \] ### Step 10: Approximate the final answer Since we are looking for an approximate value, we can round \(12.8125\) to \(12.81\) or simply \(12.8\). Thus, the final answer is approximately: \[ \boxed{12.81} \]
Promotional Banner

Topper's Solved these Questions

  • APPROXIMATION

    ARIHANT SSC|Exercise Fast Track Practice|74 Videos
  • ALLIGATIONS

    ARIHANT SSC|Exercise EXERCISE|29 Videos
  • AREA AND PERIMETER

    ARIHANT SSC|Exercise FAST TRACK TECHENIQUES|133 Videos

Similar Questions

Explore conceptually related problems

3/7 xx 7/17

Evaluate : (17.6xx0.51)/(0.02xx3)

117.95xx8.017xx4.98=?

447.75+28 xx4.99 = ?

(21 + 99) xx (30 - 19.02) = ?

3745div24.05xx17.98=?

(3.7xx3.7+2.3xx2.3+2xx3.7xx2.3)/(4.6xx4.6-3.4xx3.4)=

999((57)/(99))xx99=