Home
Class 14
MATHS
95^(3//7)*95^(0.89) = 95^(?)...

`95^(3//7)*95^(0.89) = 95^(?)`

A

a. 1.31

B

b. 3

C

c. 2.99

D

d. 2.7

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( 95^{\frac{3}{7}} \times 95^{0.89} = 95^{?} \), we can use the property of exponents which states that when multiplying two powers with the same base, we can add their exponents. ### Step-by-step Solution: 1. **Identify the Base and Exponents**: - The base is \( 95 \). - The exponents are \( \frac{3}{7} \) and \( 0.89 \). 2. **Apply the Exponent Addition Rule**: - According to the property of exponents, we can combine the exponents: \[ 95^{\frac{3}{7}} \times 95^{0.89} = 95^{\left(\frac{3}{7} + 0.89\right)} \] 3. **Convert \( 0.89 \) to a Fraction**: - To add \( \frac{3}{7} \) and \( 0.89 \), we can convert \( 0.89 \) into a fraction. - \( 0.89 = \frac{89}{100} \). 4. **Find a Common Denominator**: - The least common multiple of \( 7 \) and \( 100 \) is \( 700 \). - Convert both fractions: \[ \frac{3}{7} = \frac{3 \times 100}{7 \times 100} = \frac{300}{700} \] \[ 0.89 = \frac{89 \times 7}{100 \times 7} = \frac{623}{700} \] 5. **Add the Two Fractions**: - Now we can add the two fractions: \[ \frac{300}{700} + \frac{623}{700} = \frac{300 + 623}{700} = \frac{923}{700} \] 6. **Write the Final Exponent**: - Therefore, we can write: \[ 95^{\frac{3}{7}} \times 95^{0.89} = 95^{\frac{923}{700}} \] 7. **Conclusion**: - Thus, the value of \( ? \) is \( \frac{923}{700} \). ### Final Answer: \[ ? = \frac{923}{700} \]
Promotional Banner

Topper's Solved these Questions

  • APPROXIMATION

    ARIHANT SSC|Exercise Fast Track Practice|74 Videos
  • ALLIGATIONS

    ARIHANT SSC|Exercise EXERCISE|29 Videos
  • AREA AND PERIMETER

    ARIHANT SSC|Exercise FAST TRACK TECHENIQUES|133 Videos

Similar Questions

Explore conceptually related problems

(9.5)^(3)

(9.5)^(2)=?

(-95)-: _____=95

15^(x)-25.3^(x)-9.5^(x)+225>=0

Q.27 A bag contains 20 tickets marked with numbers 1 to 20. Two tickets are drawn,thre probability that both numbers are prime is- (A) 4/95 (C) 14/95 (B) 7/95 (D) 1/10

(0.3+0.7x)/(x)=0.95

(i^(95)+i^(67)) =

If the sum of 10 observations is 95, then their mean is (a) 9.5 (b) 10 (c)950 (d) 95

The digit in the unit place of the number representsed by (7^(95)-3^(58)) is 0(b)4(c)6(d)7