Home
Class 14
MATHS
3^(6 . 5) *27^(-5) xx 9^(2) = 3^(?)...

`3^(6 . 5) *27^(-5) xx 9^(2) = 3^(?)`

A

a. 5

B

b. 4.5

C

c. 7

D

d. 6.5

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \(3^{6.5} \cdot 27^{-5} \cdot 9^{2} = 3^{?}\), we will express all terms with the same base, which is 3. ### Step-by-step Solution: 1. **Rewrite \(27\) and \(9\) in terms of base \(3\)**: - We know that \(27 = 3^3\) and \(9 = 3^2\). - Therefore, we can rewrite the equation as: \[ 3^{6.5} \cdot (3^3)^{-5} \cdot (3^2)^{2} \] 2. **Apply the power of a power rule**: - Using the rule \((a^m)^n = a^{m \cdot n}\): - \((3^3)^{-5} = 3^{-15}\) - \((3^2)^{2} = 3^{4}\) - So, the equation now becomes: \[ 3^{6.5} \cdot 3^{-15} \cdot 3^{4} \] 3. **Combine the exponents**: - When multiplying with the same base, we add the exponents: \[ 3^{6.5 + (-15) + 4} \] 4. **Calculate the exponent**: - Now, we simplify the exponent: \[ 6.5 - 15 + 4 = 6.5 + 4 - 15 = 10.5 - 15 = -4.5 \] - Thus, we have: \[ 3^{-4.5} \] 5. **Set the exponent equal to the question mark**: - From the equation \(3^{6.5} \cdot 27^{-5} \cdot 9^{2} = 3^{?}\), we find that: \[ ? = -4.5 \] ### Final Answer: The value of the question mark is \(-4.5\). ---
Promotional Banner

Topper's Solved these Questions

  • APPROXIMATION

    ARIHANT SSC|Exercise Fast Track Practice|74 Videos
  • ALLIGATIONS

    ARIHANT SSC|Exercise EXERCISE|29 Videos
  • AREA AND PERIMETER

    ARIHANT SSC|Exercise FAST TRACK TECHENIQUES|133 Videos

Similar Questions

Explore conceptually related problems

(18)^(3.5)-:(27)^(3.5)xx6^(3.5)=2^(7)3.5b.4.5c.6d.7e. none of these

Evaluate: (i) ((5)/(3)) ^(2 ) xx ((5)/(3)) ^(2) (ii) ((5)/(6))^(6) xx ((5)/(6)) ^(-4) (iii) ((2)/(3)) ^(-3) xx ((2)/(3)) ^(-2) (iv) ((9)/(8)) ^(-3) xx ((9)/(8)) ^(2)

Simplify : (i) (12^(4)+9^(3)xx4)/(6^(3)xx8^(2)xx27)( ii) 2^(3)xx a^(3)xx5a^(4)

What is the activation energy for the decomposition of N_(2)O_(5) as N_(2)O_(5) hArr 2NO_(2)+1/2 O_(2) If the values of the rate constants are 3.45 xx 10^(-5) and 6.9 xx 10^(-3) at 27^(@)C and 67^(@)C respectively

(-5)^(2)xx(-5)^(-3)=(-5)^(-6)

(-8)^3xx(-9)^3-:6^5

(5)/(6) -: (6)/(7) xx ? - (8)/(9) -: 1 (2)/(5) -: (3)/(4) xx 3 (1)/(3) = 2(7)/(9)