Home
Class 14
MATHS
(9.5)^2 = ?...

`(9.5)^2` = ?

A

75

B

90

C

90.25

D

110

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( (9.5)^2 \), we can follow these steps: ### Step 1: Rewrite the number We can express \( 9.5 \) as \( \frac{95}{10} \). ### Step 2: Square the fraction Now, we can square \( 9.5 \): \[ (9.5)^2 = \left(\frac{95}{10}\right)^2 \] ### Step 3: Apply the square to the fraction Using the property of fractions, we square both the numerator and the denominator: \[ \left(\frac{95}{10}\right)^2 = \frac{95^2}{10^2} \] ### Step 4: Calculate \( 95^2 \) Now, we need to calculate \( 95^2 \): \[ 95^2 = 9025 \] ### Step 5: Calculate \( 10^2 \) Next, we calculate \( 10^2 \): \[ 10^2 = 100 \] ### Step 6: Combine the results Now we can combine the results from Step 4 and Step 5: \[ (9.5)^2 = \frac{9025}{100} \] ### Step 7: Perform the division Finally, we divide \( 9025 \) by \( 100 \): \[ \frac{9025}{100} = 90.25 \] ### Final Answer Thus, the value of \( (9.5)^2 \) is: \[ \boxed{90.25} \] ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • APPROXIMATION

    ARIHANT SSC|Exercise Fast Track Practice|74 Videos
  • ALLIGATIONS

    ARIHANT SSC|Exercise EXERCISE|29 Videos
  • AREA AND PERIMETER

    ARIHANT SSC|Exercise FAST TRACK TECHENIQUES|133 Videos

Similar Questions

Explore conceptually related problems

Solve : 0.3 (3y -4.5) + 2.9 (5.5 -5y) = 1

Find the positive value of x for which the given equation is satisfied: (x^2-9)/(5+x^2)=\ -5/9 (ii) (y^2+4)/(3y^2+7)=1/2

Knowledge Check

  • Simplify:- [(7)^2 + (9)^2]/5 = ?

    A
    a. 38
    B
    b. 26
    C
    c. 11
    D
    d. 18
  • (4^(5)xx3^5)/((12)^(5) xx9^2)= ?

    A
    `3^(2)xx2^5`
    B
    `(1)/(3^4)`
    C
    `12`
    D
    `(1)/(4^3)`
  • (69-14xx3+2)/(9xx5-(5)^2)=?

    A
    1.45
    B
    2.75
    C
    26.5
    D
    265
  • Similar Questions

    Explore conceptually related problems

    Solve 0.3 (3 gamma - 4.5) + 2. 9 ( 5.5-5 gamma)= 1

    The number of solutions of the equation (1)/(2) log_(sqrt(3)) ((x + 1)/(x + 5)) + log_(9) (x + 5)^(2) = 1 is

    The index form of root9(((4)/(5))^(2)) is

    Solve (x + 9) (x ^(2) + 5).

    If 4 + 9 + 3 + 6 = 9463 and 1 + 5 + 7 + 6 = 5167, then 9 + 5 + 4 + 2 = ?