Home
Class 14
MATHS
36.0001 + 5.9998 xx sqrt(?)= 108.0005...

`36.0001 + 5.9998 xx sqrt(?)= 108.0005`

A

18

B

16

C

256

D

325

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( 36.0001 + 5.9998 \times \sqrt{x} = 108.0005 \), we will follow these steps: ### Step 1: Simplify the equation First, we can simplify the equation by isolating the square root term. We can start by subtracting \( 36.0001 \) from both sides: \[ 5.9998 \times \sqrt{x} = 108.0005 - 36.0001 \] ### Step 2: Calculate the right side Now, we calculate the right side: \[ 108.0005 - 36.0001 = 71.9994 \] So, we have: \[ 5.9998 \times \sqrt{x} = 71.9994 \] ### Step 3: Isolate \(\sqrt{x}\) Next, we divide both sides by \( 5.9998 \) to isolate \(\sqrt{x}\): \[ \sqrt{x} = \frac{71.9994}{5.9998} \] ### Step 4: Calculate \(\sqrt{x}\) Now, we perform the division: \[ \sqrt{x} \approx 12 \] ### Step 5: Square both sides To find \( x \), we square both sides: \[ x = 12^2 = 144 \] ### Final Answer Thus, the value of \( x \) is: \[ \boxed{144} \]
Promotional Banner

Topper's Solved these Questions

  • APPROXIMATION

    ARIHANT SSC|Exercise Fast Track Practice|74 Videos
  • ALLIGATIONS

    ARIHANT SSC|Exercise EXERCISE|29 Videos
  • AREA AND PERIMETER

    ARIHANT SSC|Exercise FAST TRACK TECHENIQUES|133 Videos

Similar Questions

Explore conceptually related problems

10.0001+9.9999-8.9995=? (a) 9.0005 (b) 10.9995 (c) 11.0001 (d) 11.0005 (e) None of these

The number sqrt(0.0001) is

sqrt( (0.25)/(0.0009) ) xx sqrt( (0.09)/(0.36)) is equal to

sqrt(.0025)xx sqrt(2.25)xx sqrt(.0001)=?(a).000075 (b) .0075(c).075 (d) None of these