Home
Class 12
MATHS
Let int(0)^(a) f(x)dx=lambda and int(0)^...

Let `int_(0)^(a) f(x)dx=lambda` and `int_(0)^(a) f(2a-x)dx=mu`. Then,
`int_(0)^(2a) f(x) dx` equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(2a)f(x)dx is equal to -

int_(0)^(a)f(x)dx=lambda and int_(0)^(a)f(2a-x)dx=mu then int_(0)^(2a)f(x) dx is equal to

If int_(0)^(a) f(x) dx + int_(0)^(a) f(2a-x) dx =

If int_(0)^(a)f(2a-x)dx = m and int_(0)^(a)f(x) dx = n , then int_(0)^(2a)f(x)dx is equal to

If f(2a-x)=-f(x) then int_(0)^(2a)f(x)dx is equal to-

If int_0^(a) f(2a-x) dx = mu and int_0^(a) f(x) dx = lambda , then int_0^(2a) f(x) dx =

int_(0)^(a)f(2a-x)dx=m and int_(0)^(a)f(x)dx=n then int_(0)^(2a)f(x)dx is equal to

If f(x) = f(a+x) and int_(0)^(a) f(x) dx = k, "then" int _(0)^(na) f(x) dx is equal to

int_(0)^(a) (f(x)+f(-x))dx=

int_(0)^(a)[f(x)+f(a-x)]dx=