Home
Class 12
MATHS
If A+B+C=180^@, then prove that tan^2 (t...

If `A+B+C=180^@,` then prove that `tan^2 (theta/2)=tan(B/2) tan(C/2).` when `cos theta(sin theta+sin theta)=sin A.`

Promotional Banner

Similar Questions

Explore conceptually related problems

If A+B+C=180^@, then prove that tan^2 (theta/2)=tan(B/2) tan(C/2). when cos theta(sin B+sin C)=sin A.

If A+B+C=180^@, then prove that tan^2 (theta/2)=tan(B/2) tan(C/2). when cos theta(sin B+sin C)=sin A.

Prove that : (1 - tan^(2) theta)/(1 + tan^(2) theta) = cos^(2) theta - sin^(2) theta

If tan theta=(a)/(b) then b cos2 theta+a sin2 theta=

Prove that tan^2 (theta)-sin^2 (theta)= tan^2 (theta) sin^2 (theta)

Prove that : tan^2 theta -sin^2 theta =tan^2 theta sin^2 theta .

Prove that (sin theta - 2 sin^(3) theta)/(2 cos^(3) theta - cos theta) = tan theta

Prove that : tan theta - cot theta = (2 sin^(2) theta - 1)/(sin theta cos theta)

Prove that : tan theta - cot theta = (2 sin^(2) theta - 1)/(sin theta cos theta)