Home
Class 12
MATHS
" 22."(sin^(2)x)/(1+cos x)...

" 22."(sin^(2)x)/(1+cos x)

Promotional Banner

Similar Questions

Explore conceptually related problems

1- (sin ^ (2) x) / (1 + cos x) + (1 + cos x) / (sin x) - (sin x) / (1-cos x) =

((1) / ((sec x) ^ (2) - (cos x) ^ (2)) + (1) / ((cos ecx) ^ (2) - (sin x) ^ (2))) ( cos x) ^ (2) (sin x) ^ (2) = (1- (cos x) ^ (2) (sin x) ^ (2)) / (2+ (cos x) ^ (2) (sin x) ^ (2))

(cos^(3) x- sin^(2) x)/(cos x - sin x)=(1)/(2) (2 + sin 2x)

If maximum and minimum values of the determinant |{:(1 + cos^(2)x , sin^(2) x, cos 2x),(cos^(2) x , 1 + sin^(2)x, cos 2x),(cos^(2) x , sin^(2) x , 1 + cos 2 x):}| are alpha and beta then

(1+sin x+cos x)^(2)=2(1+sin x)(1+cos x)

Integrate the following: int{(5cos^(3)x+2sin^(3)x)/(2sin^(2)x*cos^(2)x)+sqrt(1+sin2x)+(1+2sin x)/(cos^(2)x)+(1-cos2x)/(1+cos2x)}dx

The value of (2(sin2x+2cos^(2)x-1))/(cos x sin x cos3x+sin3x) is

If f(x) = |(1+sin^(2)x,cos^(2)x,4 sin 2x),(sin^(2)x,1+cos^(2)x,4 sin 2x),(sin^(2)x,cos^(2)x,1+4 sin 2x)| What is the maximum value of f(x)?

If the maximum and minimum values of the determinant |(1 + sin^(2)x,cos^(2) x,sin 2x),(sin^(2) x,1 + cos^(2) x,sin 2x),(sin^(2) x,cos^(2) x,1 + sin 2x)| are alpha and beta , then

If the maximum and minimum values of the determinant |(1 + sin^(2)x,cos^(2) x,sin 2x),(sin^(2) x,1 + cos^(2) x,sin 2x),(sin^(2) x,cos^(2) x,1 + sin 2x)| are alpha and beta , then