Home
Class 10
MATHS
" 16) "((ln x)^(2)-3ln x+3)/(ln x-1)<1...

" 16) "((ln x)^(2)-3ln x+3)/(ln x-1)<1

Promotional Banner

Similar Questions

Explore conceptually related problems

if ((ln x)^(2)-3ln x+3)/(ln x-1)<1 then x belongs to

int((log x)^(2)-log x+1)/(((log x)^(2)+1)^((3)/(2)))dx

int(log(x+1)-log x)/(x(x+1))dx= (A) log(x-1)log x+(1)/(2)(log x-1)^(2)-(1)/(2)(log x)^(2)+c (B) (1)/(2)(log(x+1))^(2)+(1)/(2)(log x)^(2)-log(x+1)log x+c (C) -(1)/(2)(log(x+1)^(2))-(1)/(2)(log x)^(2)+log x*log(x+1)+c (D) [log(1+(1)/(x))]^(2)+c

Solve for x : 3^(log x)-2^(log x) =2^(log x+1)-3^(log x-1)

3^(log x)-2^(log x)=2^(log x+1)-3^(log x-1), where base is 10,

Let f(x) = ln(x-1)(x-3) and g(x) = ln(x-1) + ln(x-3) then,

lim_(x rarr1)(x^(3)-x^(2)log x+log x-1)/(x^(2)-1) =

The value of definite integral int_(1/3)^(2/3)(ln x)/(ln(x-x^(2)))dx is equal to

The value of definite integral int_(1/3)^(2/3)(ln x)/(ln(x-x^(2)))dx is equal to:

The value of definite integral int_(1/3)^(2/3)(ln x)/(ln(x-x^(2)))dx is equal to :