Home
Class 10
MATHS
" (iv) "(n!)/((n-r)!)=n(n-1)(n-2)...[n-(...

" (iv) "(n!)/((n-r)!)=n(n-1)(n-2)...[n-(r-1)]

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that : (i) (n!)/(r!)=n(n-1)(n-2)...(r+1) (ii) (n-r+1)*(n!)/((n-r+1)!)=(n!)/((n-r)!) (iii) (n!)/(r!(n-r)!)+(n!)/((r-1)!(n-r+1)!)=((n+1)!)/(r!(n-r+1)!)

Prove that: (i) (n!)/(r!) = n(n-1) (n-2)......(r+1) (ii) (n-r+1). (n!)/((n-r+1)!) = (n!)/((n-r)!)

Prove that: (i) (n!)/(r!) = n(n-1) (n-2)......(r+1) (ii) (n-r+1). (n!)/((n-r+1)!) = (n!)/((n-r)!)

(ii) (n!)/((n-r)!r!)+(n!)/((n-r+1)!(r-1)!)=((n+1)!)/(r!(n-r+1)!)

If (1-x)^(-n)=a_(0)+a_(1)x+a_(2)x^(2)+...+a_(r)x^(r)+..., then a_(0)+a_(1)+a_(2)+...+a_(r) is equal to (n(n+1)(n+2)...(n+r))/(r!)((n+1)(n+2)...(n+r))/(r!)(n(n+1)(n+2)...(n+r-1))/(r!) none of these

Statement-1 : sum_(r=0)^(n) r^(2) ""^(n)C_(r) x^(r) = n (n-1) x^(2) (1 + x)^(n-2) + nx (1 +x)^(n-1) Statement-2: sum_(r=0)^(n) r^(2) ""^(n)C_(r) = n (n-1)2^(n-2)+ n2^(n-1) .

Statement-1 : sum_(r=0)^(n) r^(2) ""^(n)C_(r) x^(r) = n (n-1) x^(2) (1 + x)^(n-2) + nx (1 +x)^(n-1) Statement-2: sum_(r=0)^(n) r^(2) ""^(n)C_(r) = n (n-1)2^(n-2)+ n2^(n-1) .

If (1-x)^(-n)=a_0+a_1x+a_2x^2+...+a_r x^r+ ,t h e na_0+a_1+a_2+...+a_r is equal to (n(n+1)(n+2)(n+r))/(r !) ((n+1)(n+2)(n+r))/(r !) (n(n+1)(n+2)(n+r-1))/(r !) none of these

Prove that (n!)/(r!(n-r)!)+(n!)/((r-1)!(n-r+1)!) =((n+1)!)/(r!(n-r+1)!)

Prove that (n!)/(r!(n-r)!)+(n!)/((r-1)!(n-r+1)!)= ((n+1)!)/ (r!(n-r+1)!) .