Home
Class 12
MATHS
Prove that [lim(xto0) (sinx)/(x)]=0, whe...

Prove that `[lim_(xto0) (sinx)/(x)]=0,` where `[.]` represents the greatest integer function.

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that [lim_(xto0) (tan^(-1)x)/(x)]=0, where [.] represents the greatest integer function.

Prove that [lim_(xto0) (tan^(-1)x)/(x)]=0, where [.] represents the greatest integer function.

Evalute [lim_(xto0) (sin^(-1)x)/(x)]=1 , where [*] represets the greatest interger function.

Evalute [lim_(xto0) (sin^(-1)x)/(x)]=1 , where [*] represets the greatest interger function.

Evalute [lim_(xto0) (sin^(-1)x)/(x)]=1 , where [*] represets the greatest interger function.

Evaluate: lim_(x rarr0)(sin x)/(x), where [.] represents the greatest integer function.

Prove that [lim_(xrarr0) (sinx.tanx)/(x^(2))]=1 ,where [.] represents greatest integer function.

Prove that [lim_(xrarr0) (sinx.tanx)/(x^(2))]=1 ,where [.] represents greatest integer function.

Prove that [lim_(xrarr0) (sinx.tanx)/(x^(2))]=1 ,where [.] represents greatest integer function.

Evaluate: [("lim")_(xto0)(tanx)/x] where [dot] represents the greatest integer function