Home
Class 12
MATHS
If origin is the orthocentre of the tria...

If origin is the orthocentre of the triangle with vertices `A(cos alpha, sin alpha), B(cos beta, sin beta), C(cos gamma, sin gamma)` then `cos(2alpha-beta-gamma) + cos(2beta-gamma-alpha)+cos(2gamma-alpha-beta)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If origin is the orthocentre of the triangle with vertices A(cos alpha,sin alpha),B(cos beta,sin beta),C(cos gamma,sin gamma) then cos(2 alpha-beta-gamma)+cos(2 beta-gamma-alpha)+cos(2 gamma-alpha-beta)=

The orthocentre of triangle formed by (a cos alpha,a sin alpha),(a cos beta,a sin beta),(a cos gamma,a sin gamma) is

If origin is the orthocenter of a triangle formed by the points (cos alpha*sin alpha,0)*(cos beta,sin beta.0),(cos gamma,sin gamma,0) then sum cos(2 alpha-beta-gamma)=

If (0,0) is orthocentre of triangle formed by A(cos alpha,sin alpha),B(cos beta,sin beta),C(cos gamma,sin gamma) then /_BAC=

Find the area of the triangle whose vertices are : (a cos alpha, b sin alpha), (a cos beta, b sin beta), (a cos gamma, b sin gamma)

If (0,0) is orthocentre of triangle formed by A(cos alpha,sin alpha),B(cos beta,sin beta),C(cos gamma,sin gamma) then /_BAC is

Delta ABC has vertices A(a cos alpha,a sin alpha),B(a cos beta,a sin beta) and C(a cos gamma,a sin gamma) then its orthocentre is

cos alpha sin (beta-gamma) + cos beta sin (gamma-alpha) + cos gamma sin (alpha-beta) =

If alpha=cos alpha+i sin alpha,b=cos beta+i sin beta,c=cos gamma+i sin gamma and (b)/(c)+(c)/(a)+(a)/(b)=1 then cos(beta-gamma)+cos(gamma-alpha)+cos(alpha-beta)=

If cos alpha+cos beta+cos gamma=0=sin alpha+sin beta+sin gamma then x^(sin(2 alpha-beta-gamma)*x^(sin(2 beta-gamma-alpha)))*x ^(sin(2 gamma-alpha-beta)) is