Home
Class 11
MATHS
If domain of the function f(x)=sqrt(10x-...

If domain of the function `f(x)=sqrt(10x-x^(2))` is `A` then possible value(s) of `x in A` satisfying `(6{x}^(2)-5{x}+1)=0` is/are (where {-} denotes fractional part function)

Promotional Banner

Similar Questions

Explore conceptually related problems

The domain of the function f(x)=sqrt(5|x|-x^2-6) is

The domain of the function f(x)=1/sqrt((5-x)(x-2)) is

Solve {x+1}-x^(2)+2x>0( where {.} denotes fractional part function)

Range of the function f(x)=({x})/(1+{x}) is (where "{*}" denotes fractional part function)

If x in[2,3) ,then {x} equals, where {.} denotes fractional part function.

The value of int_(-1)^(2){2x}dx is (where function 0 denotes fractional part function)

The value of lim_(xto0)((tan({x}-1))sin{x})/({x}({x}-1) is where {x} denotes the fractional part function

The domain of function f(x)=ln(ln((x)/({x}))) is (where { ) denotes the fractional part function)

The range of f(x)=({x}^(2)-{x}+1)/({x}^(2)+{x}+1) (where {f} denotes fractional function) is

If domain of f(x) is (-oo,0], then domain of f(6{x}^(2)-5(x)+1) is (where {.} represents fractional part function)