Home
Class 12
MATHS
underset(n to oo)lim (1+2+3+...+n)/(n^(2...

`underset(n to oo)lim (1+2+3+...+n)/(n^(2))=`

Promotional Banner

Similar Questions

Explore conceptually related problems

underset(n to oo)lim(((n+1)(n+2)...3n)/(n^(2n)))^((1)/(n)) is equal to

underset(n to oo)lim (2^(n)-n)/(2^(n))=

Find underset(n to oo)lim ((2n^(3))/(2n^(2)+3)+(1-5n^(2))/(5n+1))

underset(n to oo)lim (2^(n)-1)/(3^(n)+1)=

underset(n to oo)lim ((n^(2)-n+1)/(n^(2)-n-1))^(n(n-1))

underset(n to oo)lim (1+3+6+...+n(n+1)//2)/(n^(3))=

underset(n to oo)lim (n(1^(3)+2^(3)+...+n^(3))^(2))/((1^(2)+2^(2)+...+n^(2))^(3))=

Evaluate : underset(n to oo)lim [((2n)!)/(n!n^(n))]^((1)/(n))

underset(n to oo)lim (5^(n)+1)/(3^(n)-1)=