Home
Class 11
MATHS
हल कीजिए - (i) 2(i)^(2)+6i^(3)+3i^(16...

हल कीजिए -
(i) `2(i)^(2)+6i^(3)+3i^(16)-6i^(19)+4i^(25)` (ii) `5i^(5)+4i^(4)+3i^(3)+2i^(2)+i`

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate 2i^(2)+ 6i^(3)+3i^(16) -6i^(19) + 4i^(25)

Evaluate 2i^(2)+ 6i^(3)+3i^(16) -6i^(19) + 4i^(25)

If 2i^2+6i^3+3i^(16)-6i^(19)+4i^(25)=x+iy , then

Write the following in the form x+iy: (i) (3+2i)(2-i) (ii) 2i^(2)+6i^(3)+3i^(16)-6i^(19)+4i^(25) . (iii) ((3-2i)(2+3i))/((1+2i)(2-i)) .

simplify the following 2i^(2)+6i^(3)+3i^(16)-6i^(19)+4i^(25)

Simplify: 2i^2+6i^3+3i^16-6i^19+4i^25

simplify: 5i^5+4i^4+3i^3+2i^2+i

Simplify: i+ 2i^(2) + 3i^(3) + i^(4)

Prove that : 2i^2+6i^3+3i^16-6i^19+4i^25=1+4i .

i+ 2i^(2) + 3i^(3) + 4i^(4) + …. + 100i^(100) =