Home
Class 12
MATHS
(dy)/(dx)=(1+y^(2))/(1+x^(2))...

(dy)/(dx)=(1+y^(2))/(1+x^(2))

Promotional Banner

Similar Questions

Explore conceptually related problems

The solution of the differential equation xy(dy)/(dx)=(1+y^(2))(1+x+x^(2))/(1+x^(2))

The solution of the differential equation xy(dy)/(dx)=((1+y^(2))(1+x+x^(2)))/(1+x^(2)) is:

The solution of the differential equation xy(dy)/(dx)={(1+y^2)(1+x+x^2)}/(1+x^2) is:

If sqrt(1-x^(2))+sqrt(1-y^(2))=a(x-y) , then prove that (dy)/(dx)=sqrt((1-y^(2))/(1-x^(2)))

If sqrt(1-x^(2))+sqrt(1-y^(2))=a(x-y), prove that (dy)/(dx)=sqrt((1-y^(2))/(1-x^(2)))

If sqrt(1-x^(2))+sqrt(1-y^(2))=a(x-y), prove that (dy)/(dx)=sqrt((1-y^(2))/(1-x^(2)))

If sqrt(1-x^2)+sqrt(1-y^2)=a(x-y), prove that (dy)/(dx)=sqrt((1-y^2)/(1-x^2))

sqrt(1-x^(2))+sqrt(1-y^(2))=a(x-y),show(dy)/(dx)=sqrt((1-y^(2))/(1-x^(2)))