Home
Class 12
MATHS
The value of lim(x to 0) (10^(x)-2^(x)-...

The value of `lim_(x to 0) (10^(x)-2^(x)-5^(x)+1)/(x log(1+x))` is -

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of lim_(x rarr0)(10^(x)-2^(x)-5^(x)+1)/(x^(2))

The value of lim_(x rarr 0) ((4^(x)-1)^(3))/(sin(x^(2)/4) log (1+3x)) is

lim_(x to 0)(xe^(x)-log(1+x))/(x^(2))=

Find the value of |(lim_( x to 1) (x^x-1)/(x log x )) /( lim_( xto0) (log (1-3x))/x)|

5.Find the value of lim_(x->0) log(1+x)/(x)

5.Find the value of lim_(x->0) log(1+x)/(x)

The value of lim_(x to 0) ((e^x-1)log(1+x))/sin^2x is equal to