Home
Class 11
MATHS
If sin(B+C-A),sin(C+A-B),sin(A+B-C), are...

If `sin(B+C-A),sin(C+A-B),sin(A+B-C),` are `AdotPdot,t h e ncot A ,cot B ,cot Ca r ein` `G P` (b) `H P` (c) `A P` (d) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

If sin(B+C-A),sin(C+A-B),sin(A+B-C), are AdotPdot,t h e ncot A ,cot B ,cot C a r ein (a) G P (b) H P (c) A P (d) none of these

sin(B+C-A),sin(C+A-B),sin(A+B-C)sin(B+C-A),sin(C+A-B),sin(A+B-C) are A.P., then cot A,cot B,cot C are in GP(b)HP(c)AP(d) none of these

sin_(sin(B+C-A),sin(C+B,cot B,sin(A+B-C))

If cos (A+B) sin (C+D)= cos(A-B)* sin(C-D), then cot A cot B cot C =

If cos(A+B)sin(C+D)=cos(A-B)sin(C-D) , prove that cot A cot B cot C= cot D.

If cos(A+B)sin(C+D)=cos(A-B)sin(C-D) , prove that cot A cot B cot C=cotD .

If cos(A+B)sin(C+D)=cos(A-B)sin(C-D) , prove that cot A cot B cot C=cotD .

If cos(A+B)sin(C+D)=cos(A-B)sin(C-D) , prove that cot A cot B cot C=cotD .

In a triangle ABC,if sin A sin(B-C)=sin C sin(A-B), then prove that cot A,cot B,cot C are in AP

In a triangle ABC,if sin A sin(B-C)=sin C sin(A-B), then prove that cot A,cot B,cot C are in A.P.