Home
Class 10
MATHS
(1-x+x^(2))^(4)" an "(pi)/(x+11)" .anve ...

(1-x+x^(2))^(4)" an "(pi)/(x+11)" .anve "=

Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha=tan^(-1)((4x-4x^(3))/(1-6x^(2)+x^(2))),beta=2sin^(-1)((2x)/(1+x^(2))) and (tan pi)/(8)=k, then (a) alpha+beta=pi for x in[(1,1)/(k)]( b) alpha+beta for x in(-k,k)(c)alpha+beta=pi for x in[(1,1)/(k)](d)alpha+beta=0 for x in[-k,k]

(tan ((pi)/(4) +x))/( tan ((pi)/(4) -x ))= ((1 + tan x )/( 1- tan x )) ^(2)

(tan ((pi)/(4) +x))/( tan ((pi)/(4) -x ))= ((1 + tan x )/( 1- tan x )) ^(2)

If f (x) = sqrt(cos ec ^(2) x - 2 sin x cos x - (1)/(tan ^(2) x )) x in ((7pi)/(4), 2pi ) then f' ((11 pi)/(6))=

If f (x) = sqrt(cos ec ^(2) x - 2 sin x cos x - (1)/(tan ^(2) x )) x in ((7pi)/(4), 2pi ) then f' ((11 pi)/(6))=

The angle between the circles x^(2)+y^(2)-4x-6y-3=0 . x^(2)+y^(2)+8x-4y+11=0 ( 1 - (pi)/(2) 2 - (pi)/(4) 3- (pi)/(3) 4- ( pi)/(6) )

(tan ((pi)/(4) +4))/( tan ((pi)/(4) -x ))= ((1 + tan x )/( 1- tan x )) ^(2)

(tan ((pi)/(4) +4))/( tan ((pi)/(4) -x ))= ((1 + tan x )/( 1- tan x )) ^(2)

The range of f(x)=cot^(-1)(log_(1/2)(x^(4)-2x^(2)+3)) is ( (pi)/(2) (3 pi)/(4) 0 (3 pi)/(4) pi) (0 (3 pi)/(4)