Home
Class 14
MATHS
[" 15.यदि "y={log[x+sqrt(1+x^(2))]}^(2)"...

[" 15.यदि "y={log[x+sqrt(1+x^(2))]}^(2)" .हो,तो Proven "],[qquad (1+x^(2))(d^(2)y)/(dx^(2))+x(dy)/(dx)=2.quad del_(2)^(prime)]

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=[log(x+sqrt(1+x^(2)))]^(2) , show that : (1+x^(2))(d^(2)y)/(dx^(2))+x(dy)/(dx)-2=0 .

If y={log(x+sqrt(x^(2)+1))}^(2), show that (1+x^(2))(d^(2)y)/(dx^(2))+x(dy)/(dx)=2

If y={log(x+sqrt(x^(2)+1))}^(2), show that (1+x^(2))(d^(2)y)/(dx^(2))+x(dy)/(dx)=2

If y=log{x+sqrt(x^(2)+a^(2))}, prove that: (x^(2)+a^(2))(d^(2)y)/(dx^(2))+x(dy)/(dx)=0

If y=log[x+sqrt(x^(2)+1)] , then prove that (x^(2)+1)(d^(2)y)/(dx^(2))+x(dy)/(dx)=0 .

If y=log(x+sqrt(1+x^(2))), then show that (1+x^(2))(d^(2)y)/(dx^(2))+x(dy)/(dx)=0

If y=(x+sqrt(1+x^(2)))^(n) , then (1+x^(2))(d^(2)y)/(dx^(2))+x(dy)/(dx) is equal to -

If y=log[x+sqrt(x^(2)+1)], prove that (x^(2)+1)(d^(2)y)/(dx^(2))+x(dy)/(dx)=0