Home
Class 12
MATHS
" Show that "sin^(-1)x+cos^(-1)x=(pi)/(2...

" Show that "sin^(-1)x+cos^(-1)x=(pi)/(2)

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that sin^(-1) cos (sin^(-1) x) + cos^(-1) x = (pi)/(2), |x| le 1

Prove that sin^(-1) cos (sin^(-1) x) + cos^(-1) x) = (pi)/(2), |x| le 1

Prove that sin^(-1) cos (sin^(-1) x) + cos^(-1) x) = (pi)/(2), |x| le 1

If |sin^(-1)x|+|cos^(-1)x|=(pi)/(2), then x in

If |sin^(-1)x|+|cos^(-1)x|=(pi)/(2), then x in

prove that , sin ^(-1) cos sin ^(-1 )x+cos ^(-1) sin cos ^(-1) ""x=(pi)/(2)

Show that: sin(pi/2 - x) = cos x

The soluation set of inequality (sin x+cos^(-1)x)-(cos x-sin^(-1)x)>=(pi)/(2) is equal to

Q.if solution of the equation 2sin^(-1)x cos^(-1)x-2 pi sin^(-1)x-pi cos^(-1)x+pi^(2)=0 are alpha and beta such that then which of the following is lare correct?