Home
Class 11
MATHS
" The value of the definite integral "in...

" The value of the definite integral "int_(0)^( pi/2)sqrt(tan x)dx" ,is "

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of the definite integral int_(0)^(bar(2))sqrt(tan x)dx is sqrt(2)pi(b)(pi)/(sqrt(2))2sqrt(2)pi(d)(pi)/(2sqrt(2))

The value of the definite integral int_0^(pi/2)sqrt(tanx)dx is (a) sqrt(2)pi (b) pi/(sqrt(2)) (c) 2sqrt(2)pi (d) pi/(2sqrt(2))

The value of the definite integral int_0^(pi/2)sqrt(tanx)dx is sqrt(2)pi (b) pi/(sqrt(2)) 2sqrt(2)pi (d) pi/(2sqrt(2))

The value of the definite integral int_0^(pi/2)sqrt(tanx)dx is sqrt(2)pi (b) pi/(sqrt(2)) 2sqrt(2)pi (d) pi/(2sqrt(2))

The value of the definite integral int_0^(pi/2)sqrt(tanx)dx is sqrt(2)pi (b) pi/(sqrt(2)) 2sqrt(2)pi (d) pi/(2sqrt(2))

The value of the definite integral int_(0)^(pi//2)(sin5x)/(sinx)dx is

The value of the definite integral int_(0)^((pi)/(3))ln(1+sqrt(3)tan x)dx equals -

The value of the definite integral int_(0)^(pi//3) ln (1+ sqrt3tan x )dx equals

The value of the definite integral int_(0)^(pi//3) ln (1+ sqrt3tan x )dx equals

Evaluate the definite integrals int_(0)^((pi)/(4))(tan x)dx