Home
Class 12
MATHS
sin(tan^(-1)e^(x))...

sin(tan^(-1)e^(x))

Promotional Banner

Similar Questions

Explore conceptually related problems

Find dy/dx : y = sin(tan^-1e^-x)

If f(x)=tan(tan^(-1)x^(2))+sin(sin^(-1)x) then

Number of solutions of tan(sin^(-1)x)+sin(tan^(-1)x)=x is equal to

The value of the definite integral (1)/(pi)int_((pi)/(2))^((5 pi)/(2))(e^(tan^(-1)(sin x)))/(e^(tan^(-1)(sin x)+e^(tan^(-1)(cos x)))dx is )

sin(cot^(-1)(tan(tan^(-1)x))),"x" in (0," 1]

sin(cot^(-1)(tan(tan^(-1)x))),x in(0,1]

tan(sin^(-1)x)

The value of "tan"(sin^(-1)("cos"(sin^(-1)x)))"tan"(cos^(-1)(sin(cos^(-1)x))),w h e r ex in (0,1), is equal to

If x=cos e c[tan^(-1){"cos"(cot^(-1)(sec(sin^(-1)a)))}] and y="sec"[cot^(-1){"sin"(tan^(-1)(cos e c(cos^(-1)a)))}]