Home
Class 12
MATHS
" (36) "y=(x+sqrt(x^(2)+1))^(m)" then pr...

" (36) "y=(x+sqrt(x^(2)+1))^(m)" then prove that "(x^(2)+1)y_(2)+xy_(1)-m^(2)y=0

Promotional Banner

Similar Questions

Explore conceptually related problems

If y= (x + sqrt(x^(2) + 1))^(m) then prove that, (x^(2)+1) y_(2) + xy_(1)= m^(2)y

y=[log(x+sqrt(x^(2)+1))]^(2) then prove that (x^(2)+1)y_(2)+xy_(1)=2

If y={x+sqrt(x^(2)+1)}^(m), show that (x^(2)+1)y_(2)+xy_(1)-m^(2)y=0

If y = (x+ sqrt(x ^(2) -1))^(m) then (x ^(2) -1) y_(2) + xy _(1)=

If y = sin(mcos^(-1)x) then prove that (1-x^(2))y_(2)-xy_(1)+m^(2)y=0 .

If y=(cos^(-1)x)^(2) , then prove that : (1-x^(2))y_(2)-xy_(1)-2=0 .

If y=(sin^(-1)x)^(2), prove that (1-x^(2))y_(2)-xy_(1)-2=0

If y^(1//m)+y^(-1//m)=2x , then prove that (x^(2)-1)y_(2)+xy_(1)=m^(2)y^(2)

y = [x + sqrt(x^2 + 1)]^p , prove that (x^2 + 1)y_2 + xy_1 - p^2y = 0

If y="("x+sqrt(x^(2)-1)")"^(m) , then prove that, (1-x^(2))(d^(2)y)/(dx^(2))-x(dy)/(dx)+m^(2)y=0