Home
Class 9
MATHS
" 38-If "x,y,z" are real numbers show th...

" 38-If "x,y,z" are real numbers show that "sqrt(x^(-1)*y)*sqrt(y^(-1)*z)*sqrt(z^(-1)*x)=1

Promotional Banner

Similar Questions

Explore conceptually related problems

If x,y,z are positive real numbers show that: sqrt(x^(-1)y)*sqrt(y^(-1)z)*sqrt(z^(-1)x)=1

Prove that sqrt(x^(-1)y)xxsqrt(y^(-1)z)xxsqrt(z^(-1)x)=1

If x,y,z are positive real numbers, prove that: sqrt(x^-1 y).sqrt(y^-1z).sqrt(z^(-1)x)=1

If x , y ,z are positive real numbers show that: sqrt(x^(-1)y)dotsqrt(y^(-1)z)dotsqrt(z^(-1)x)=1

If x , y ,z are positive real numbers show that: sqrt(x^(-1)y)dotsqrt(y^(-1)z)dotsqrt(z^(-1)x)=1

If x ,y ,z are positive real number, then show that sqrt((x^(-1)y) x sqrt((y^(-1)z) x sqrt((z^(-1)x) =1

Show : sqrt( x^-1y) times sqrt( y^-1z ) times sqrt( z^-1x) = 1

If x, y, z are distinct positive real numbers is A.P. then (1)/(sqrt(x)+sqrt(y)), (1)/(sqrt(z)+sqrt(x)), (1)/(sqrt(y)+sqrt(z)) are in

If x, y, z are distinct positive real numbers is A.P. then (1)/(sqrt(x)+sqrt(y)), (1)/(sqrt(z)+sqrt(x)), (1)/(sqrt(y)+sqrt(z)) are in