Home
Class 9
MATHS
2^(5x)-:2^(x)=root(5)(2^(20))...

2^(5x)-:2^(x)=root(5)(2^(20))

Promotional Banner

Similar Questions

Explore conceptually related problems

If 2^(5x)-:2^(x)=root(5)(32). Then find the value of x

Find the value of x in each of the following . (i) root5(5x + 2) = 2 (ii) root3(3x - 2) =4 (iii) ((3)/(4))^(3)((4)/(3))^(-7)= ((3)/(4))^(2x) (iv) 5^(x-3) xx 3^(2x -8) = 225 (v) (3^(3x) . 3^(2x))/(3^(x)) = root4(3^(20))

The value of lim_(xrarr1)(root5(x^(2))-2root5x+1)/((x-1)^(2)) is equal to

The value of lim_(xrarr1)(root5(x^(2))-2root5x+1)/((x-1)^(2)) is equal to

The value of lim_(xrarr1)(root5(x^(2))-2root5x+1)/(4(x-1)^(2)) is equal to

The number of irrational roots of the equation (4x)/(x^(2)+x+3)+(5x)/(x^(2)-5x+3)=-(3)/(2) is a.4

The number of roots of the equation sqrt(x^(2)-4)-(x-2)=sqrt(x^(2)-5x+6) is

Show that x^(5)-5x^(3)+5x^(2)-1=0 has three equal roots and find this root.On and the repeated roots of x^(5)-3x^(4)-5x^(3)+27x^(2)-32x+12=0