Home
Class 9
MATHS
" b) "x^(4)-y^(4)...

" b) "x^(4)-y^(4)

Promotional Banner

Similar Questions

Explore conceptually related problems

(a) If y=cos(msin^(-1)x) prove that (1-x^(2))y_(3)-3xy_(2)+(m^(2)-1)y_(1)=0 (b) Find y'' if x^(4)+y^(4)=16 .

Let Z be the set of all integers and A={(x,y);x^(4)-y^(4)=175,x,y in Z},B={(,),x>y,x,y in Z} Then,the number of elements in A nn B is

If a^(2)x^(4)+b^(2)y^(4)=c^(6)(a,b,x,y,cgt0) then the maximum value of xy is

Prove that the greatest value of xy is c^(3)/sqrt(2ab)* if a^(2)x^(4)+b^(2)y^(4)=c^(6).

Which of the following is the equation of a hyperbola? a) x^(2)-4x+16y+17=0 b) 4x^(2)+4y^(2)-16x+ 4y-60=0 c) x^(2)+2y^(2)+4x+2y-27=0 d) x^(2)-y^(2)+3x-2y-43=0

Factorise the using the identity a ^(2) -b ^(2) = (a +b) (a-b). 16 x ^(4) - 625 y ^(4)

If (2x^2-y^2)^4=256 and (x^2+y^2)^5=243 , then find x^4-y^4 The following steps are involved in solving the above problem. Arragne then in sequential order. (A) (x^2-y^2)^4=256=4^4 and (x^2+y^2)^5=3^5 (B) x^4-y^4=12 (C) (x^2-y^2)(x^2+y^2)=4xx3 (D) x^2-y^2=4 and x^2+y^2=3

If a^(2)x^(4) + b^(2)y^(4) = c^(6) , then maximum value of xy is

If a^(2)x^(4) + b^(2)y^(4)=c^(6) , then maximum value of xy is

If (x)/(y)=(a+2)/(a-2), then (x^(2)-y^(2))/(x^(2)+y^(2)) is equal to (8a)/(a^(2)+4)(b)(4a)/(a^(2)-4)(c)(4)/(a^(2))(d)(4a)/(a^(2)+4)