Home
Class 6
MATHS
[" The maximum value of the function "f(...

[" The maximum value of the function "f(x)=3x^(3)-18x^(2)+27x-40" on the set "S],[={x in R:x^(2)+30<=11x}" is: "]

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the maximum value of the function f(x)=5+9x-18x^(2)

The Minimum value of the function f(x)=x^(3)-18x^(2)+96x in [0,9]

Find the maximum value of the function (x^(2)+14x+9)/(x^(2)+2x+3) over R.

Find the maximum value of f(x)=(40)/(3x^(4)+8x^(3)-18x^(2)+60)

Find the maximum value of f(x)=(40)/(3x^(4)+8x^(3)-18x^(2)+60)

Find the maximum value of f(x)=(40)/(3x^(4)+8x^(3)-18x^(2)+60)

If x satisfies the condition f(x)={x:x^(2)+30<=11x} then maximum value of function f(x)=3x^(3)-18x^(2)-27x-40 is equal to (A)-122(B)122(C)222(D)-222

If x satisfies the condition f(x)={x:x^2+3 0le11x} then maximum value of function f(x)=3x^3-18x^2+27x-40 is equal to (A) -122 (B) 122 (C) 222 (D) -222

If x satisfies the condition f(x)={x:x^2+3 0le11x} then maximum value of function f(x)=3x^3-18x^2-27x-40 is equal to (A) -122 (B) 122 (C) 222 (D) -222