Home
Class 11
MATHS
1-2x-x^(2)=tan^(2)(x+y)+cot^(2)(x+y)...

1-2x-x^(2)=tan^(2)(x+y)+cot^(2)(x+y)

Promotional Banner

Similar Questions

Explore conceptually related problems

The general solution of the equation tan^(2)(x + y) + cot^(2) ( x+ y) = 1 - 2x - x^(2) lie on the line is :

The general solution of the equation tan^(2)(x + y) + cot^(2) ( x+ y) = 1 - 2x - x^(2) lie on the line is :

2tan(tan^(-1)(x)+tan^(-1)(x^(3))), where x in R-{-1,1} is equal to (2x)/(1-x^(2))t(2tan^(-1)x)tan(cot^(-1)(-x)-cot^(-1)(x))tan(2cot^(-1)x)

If tan^(2)(x+y)+cot^(2)(x+y)=1-2x-x^(2), then (where, n in Z )

If x ^(2)y^(2) =tan ^(-1) sqrt(x^(2) +y^(2) )+cot ^(-1) sqrt(x^(2) +y^(2)),then (dy)/(dx)=

If tan^(2)(pi(x+y))+cot^(2)(pi)x+y=1+sqrt((2x)/(1+x^(2))) where x,y are real then the least positive value of y is

Find all number of pairs x,y that satisfy the equation tan^(4) x + tan^(4)y+2 cot^(2)x * cot^(2) y=3+ sin^(2)(x+y) .

Solve the equation tan^(4)x+tan^(4)y+2cot^(2)x cot^(2)y=3+sin^(2)(x+y) for the values of x and y.