Home
Class 11
MATHS
log(0)-sin x^(2)-14log(16x)x^(3)+4log(4x...

log_(0)-sin x^(2)-14log_(16x)x^(3)+4log_(4x)sqrt(x)=0

Promotional Banner

Similar Questions

Explore conceptually related problems

log_(0.5x)x^(2)-14log_(16x)x^(3)+40log_(4x)sqrt(x)=0

log_(0.5x)x^(2)-14log_(16x)x^(3)+40log_(4x)sqrt(x)=0

log_(4)(x^(2)-1)-log_(4)(x-1)^(2)=log_(4)sqrt((4-x)^(2))

If log_(sqrt(2)) sqrt(x) +log_(2)(x) + log_(4) (x^(2)) + log_(8)(x^(3)) + log_(16)(x^(4)) = 40 then x is equal to-

If log_(sqrt(2)) sqrt(x) +log_(2)x + log_(4) (x^(2)) + log_(8)(x^(3)) + log_(16)(x^(4)) = 40 then x is equal to-

If log_(sqrt(2)) sqrt(x) +log_(2) + log_(4) (x^(2)) + log_(8)(x^(3)) + log_(16)(x^(4)) = 40 then x is equal to-

sqrt(log_(2)(2x^(2))log_(4)(16x))=log_(4)x^(3)

log_(sqrt(2))sqrt(x)+log_(2)x log_(4)(x^(2))+log_(8)(x^(3))+log_(16)(x^(4))=40 then x is equal to

The number of solutions of the equation log_(x//2)x^(2) + 40 log_(4x)sqrt(x) - 14 log_(16x) x^(3)=0 is

" If ||log_(3)x|-1|^(log_(3)^(2)x+3)=||log_(3)x|-1|^(log_(sqrt(7))x^(4)-4 ) then "