Home
Class 12
MATHS
Let |veca| = |vecb| = 2 and |vecc| = 1 A...

Let `|veca| = |vecb| = 2` and `|vecc| = 1` Also `(veca-vecc).(vecb - vecc) =0` and `|veca-vecb|^2 + |veca+vecb| = 16` then `|vec a-vec b|^2+2 vec c *(vec a+vec b)` has the value equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If veca + 2 vecb + 3 vecc = vec0 " then " veca xx vecb + vecb xx vecc + vecc xx veca=

If veca + 2 vecb + 3 vecc = vec0 " then " veca xx vecb + vecb xx vecc + vecc xx veca=

If veca + 2 vecb + 3 vecc = vec0 " then " veca xx vecb + vecb xx vecc + vecc xx veca=

If veca + 2 vecb + 3 vecc = vec0 " then " veca xx vecb + vecb xx vecc + vecc xx veca=

If |veca|=3,|vecb|= 5 and |vecc|=4 and veca+ vecb + vecc =vec0 then the value of ( veca. vecb + vecb.vecc) is equal tio

Let vec a, vec b, vec c are three vectors such that veca .veca=vecb . vecb = vecc . vecc = 3 and |veca-vecb|^2+|vecb-vecc|^2+|vecc-veca|^2=27, then

Let vec a, vec b, vec c are three vectors such that veca .veca=vecb . vecb = vecc . vecc = 3 and |veca-vecb|^2+|vecb-vecc|^2+|vecc-veca|^2=27, then

If |veca|=3,|vecb|= 5 and |vecc|=4 and veca+ vecb + vecc =vec0 then the value of ( veca. Vecb + vecb.vecc) is equal tio

If veca, vecb, vecc are three vectors such that veca + vecb+ vecc =0 and |veca| =5, |vecb|=12.|vecc|=13, then find vecavecb+vecb vec c + vec c veca